Guess Paper - 2010 Class - XII Subject - Maths

Time Allowed: 3 hours Maximum Marks: 100

General Instructions:

The question paper consist of 29 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, section B comprises of 12 questions of four marks each and section C comprises of 7 questions of six marks each.

SECTION - A

1. Evaluate:
$$\tan\left(\frac{1}{2}\cos^{-1}\left(-\frac{\sqrt{5}}{3}\right)\right)$$
.

2. Evaluate :
$$\int \frac{dx}{x \cos^2(1 + \log x)}$$
.

3. Write the value of
$$\int_{0}^{\pi/2} \log \left(\frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx.$$

4. If
$$f(x) = \sqrt{x}$$
, $(x > 0)$ and $g(x) = x^2 - 1$, find fog and gof.

5. If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, evaluate $F(0)$.

6. If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
; $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.

7. Find the value of
$$k$$
 for which the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{6-z}{5}$ are perpendicular.

8. If
$$|\vec{a}| = 2$$
; $|\vec{b}| = 7$ and $\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, find the angle between \vec{a} and \vec{b} .

.....

9. Evaluate:
$$\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \end{vmatrix}$$

10. Find the integral value(s) of x if
$$\begin{vmatrix} x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4 \end{vmatrix} = 28$$
.

SECTION - B

11. If
$$y = (\tan^{-1} x)^2$$
, show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$.

12. Evaluate:
$$\int \frac{x+3}{\sqrt{5-4x-x^2}} dx$$

Evaluate:
$$\int \frac{\sin x + \cos x}{9 + 16\sin 2x} dx.$$

Evaluate:
$$\int \frac{\sin x + \cos x}{9 + 16\sin 2x} dx.$$
13. Show that $f: \mathbb{N} \to \mathbb{N}$, given by $f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x - 1, & \text{if } x \text{ is even} \end{cases}$

is both one-one and onto.

14. If
$$x^y + y^x + x^x = a^b$$
, find $\frac{dy}{dx}$.

OR
If
$$x = a \left[\cos t + \log \left| \tan \frac{t}{2} \right| \right]$$
 and then $y = a \sin t$ find $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$.

15. Sand is pouring from a pipe at the rate of 12 cm³/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?

OR

The length x of a rectangle is decreasing at the rate of 3 cm/minute and the width y is increasing at the rate of 2cm/minute. When x = 10cm and

y = 6cm, find the rates of change of (a) the perimeter and (b) the area of the rectangle.

- **16.** Let $\vec{a} = 4\hat{i} + 5\hat{j} \hat{k}$, $\vec{b} = \hat{i} 4\hat{j} + 5\hat{k}$, $\vec{c} = 3\hat{i} + \hat{j} \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} , and is such that $\vec{d} \cdot \vec{c} = 21$.
- 17. Prove that: $\tan^{-1} \left(\frac{1 x^2}{2x} \right) + \cos^{-1} \left(\frac{1 x^2}{1 + x^2} \right) = \frac{\pi}{2}$.

OR

Find the value of : $\tan^{-1} \left(\frac{x}{y} \right) - \tan^{-1} \left(\frac{x-y}{x+y} \right)$.

- **18.** Find the distance of the point (-1,-5,-10) from the point of intersecting of the lines $\vec{r} = 2\hat{i} \hat{j} + 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\vec{r} \cdot (\hat{i} \hat{j} + \hat{k}) = 5$.
- **19.** Form a differential equation representing the family of curves $y = e^x (a \cos x + b \sin x)$, by eliminating arbitrary constants a and b.
- **20.** Find the particular solution of the differential equation :

 $\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x \ (x \neq 0)$, given that y = 0 when $x = \frac{\pi}{2}$.

- **21.** Show that : $\begin{vmatrix} (b+c)^2 & ba & ca \\ ab & (c+a)^2 & cb \\ ac & bc & (a+b)^2 \end{vmatrix} = 2abc (a+b+c)^3$
- **22.** Let X denote the number of hours you study on a Sunday. Also it is known that

$$P(X = x) = \begin{cases} 0.1, & \text{if } x = 0 \\ kx, & \text{if } x = 1 \text{ or } 2 \\ k(5 - x), & \text{if } x = 3 \text{ or } 4 \\ 0, & \text{otherwise} \end{cases}$$

where k is a constant.

- (a) Find the value of k.
- (b) What is the probability that you study atleast two hours? Exacty tow hours? Atmost two hours?

SECTION - C

23. Using matrices solve the following system of equations:

$$\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10;$$
 $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10$ and $\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13$

OR

Obtain the inverse of the following matrix using elementary row operations:

$$A = \begin{bmatrix} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{bmatrix}$$

- **24.** Evaluate : $\int_{0}^{\pi} \log(1 + \cos x) \, \mathrm{d}x$
- **25.** Using the method of integration, find the area of the region bounded by the lines 2x + y = 4, 3x 2y = 6 and x 3y + 5 = 0.

OR

Make a rough sketch of the region given below and find the area using the method of integration : $\{(x,y); 0 \le y \le x^2 + 3, 0 \le y \le 2x + 3, 0 \le x \le 3\}$.

- **26.** Find the distance of the point A(-2, 3, -4) from the line $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$ measured parallel to the plane 4x+12y-3z+1=0.
- **27.** An open box with a square base is to be made out of a given quantity of sheet of area a^2 . Show that the maximum capacity of the box is $\frac{a^3}{6\sqrt{3}}$.

OR

A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is tan⁻¹(0.5). Water is poured into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4 m.

28. A toy company manufactures two types of dolls, A and B. Market tests and available resources have indicated that the combined production level should not exceed 1200 dolls per week and the demand for dolls of type B is at most half of that for dolls of type A. Further, the production level of dolls of type A can exceed three times the production of dolls of other type by at most 600 units. If the company makes profit of Rs 12

.....

- and Rs 16 per doll respectively on dolls A and B, how many of each should be produced weekly in order to maximise the profit?
- **29.** Assume that the chance of a patient having a heart attack is 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?

